

Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics

JNU MSc 2019

Q1.	Longitudinal waves are					
	(a) Plane polarized		(b) Circularly polarized			
	(c) Elliptically polarized		(d) Unpolarized			
Q2.	One nanometer is equal to					
	(a) $0.1\mathring{A}$	(b) $10 \mathring{A}$	(c) $100\mathring{A}$	(d) $1000\mathring{A}$		
Q3.	According to the Dulong-Petit law, the atomic heat which is a product of atomic weight					
	and specific heat, of most of the elements in solid state					
	(a) Is constant		(b) Increases with atomic number			
	(c) Decrease with atomic number		(d) Does not dened on atomic weight			
Q4.	An X -ray beam consists of					
	(a) Electrons	(b) Protons	(c) Neutrons	(d) Photons		
Q5.	A thermocouple is a device to measure					
	(a) Pressure	(b) Volume	(c) Density	(d) Temperature		
Q6.	What would be the frequency of the photon produced when an electron of e					
	20 keV is brought to rest in a collision with a heavy nucleus?					
	(a) $4.84 \times 10^{18} \ Hz$		(b) $5 \times 10^{18} Hz$			
	(c) $4.23 \times 10^{18} \ Hz$		(d) $3.84 \times 10^{18} \ Hz$			
Q7.	Consider a planet of mass m , in circular motion with angular momentum, L .					
	orbits a star of mass, M and the orbit radius is r . If the radius of the orbit is changed					
	from r to $\frac{r}{2}$, what would be the new value of angular momentum?					
	(a) <i>L</i>	(b) $L/2$	(c) $\frac{L}{\sqrt{2}}$	(d) $\sqrt{2}L$		
Q8.	At time $t = 0$, a series RC circuit is connected to an emf of $9V$. How long will it take					
	for the capacitor to reach 8V?					
	(a) RC	(b) $\frac{1}{RC}$	(c) <i>RC</i> ln 9	(d) ln 9		

Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics

Q9.	Which of the following quantities has the same physical dimension as that of $\frac{h}{e^2}$, where					
	h is Planck's constant and e is electronic charge?					
	(a) Magnetic flux	(b) Electrical resistar	ace			
	(c) Magnetic field	(d) Electrical resistiv	ity			
Q10.	For a hydrogen atom the spacing between	a hydrogen atom the spacing between successive energy levels is given b				
	$\Delta_n = E_{n+1} - E_n$, where <i>n</i> is the quantum number. Which of the following statements is					
	true?					
	(a) Δ_n is constant	(b) Δ_n increases as n	n increases			
	(c) Δ_n decreases as n increases	(d) Δ_n increases and	then decreases with n			
Q11.	Consider a momentum conservation exp	periment where two i	masses m_1 and m_2 are			
	collided head-on with velocities v_1 and v_2 , respectively, the measured values are					
	$m_1 = 200 \pm 2g$, $v_1 = 5.5 \pm 0.1 m/s$ and $v_2 = 10 \pm 0.4 m/s$. What is the fractional error					
	associated with mass m_2 of the other body					
	(a) ± 7.7 (b) ± 0.77	(c) ±10.1	(d) ±0.07			
Q12.	A sinusoidal wave moving along a string in the x -direction is described by					
	$y(x,t) = 0.002\sin(10x-120t)$					
	What is the propagation speed of the wave?					
	(a) $12 \ m/s$ (b) $10 \ m/s$	(c) $120 m/s$	(d) $1200 m/s$			
Q13.	The black body radiation emitted from	e black body radiation emitted from a cavity of volume V at temperature T ha				
	chemical potential equal to (N is the number of photons emitted)					
	(a) N (b) 0	(c) $\frac{1}{T}$	(d) $\frac{V}{T}$			
Q14.	A 100W electric bulb has an efficiency of	00W electric bulb has an efficiency of 2.5%. Assuming it is a point source, the				
	intensity at a distance of $3m$ will be	tensity at a distance of $3m$ will be				
	(a) $2.5W/m^2$	(b) $25W/m^2$				
	(c) $0.025W/m^2$	(d) $0.022W/m^2$				

Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics

Q15.	An electron has a speed of $300 m/s$, accurate to 0.01% . With what accuracy						
	determine the position of the electron? (mass of electron = $9.1 \times 10^{-31} \ kg$, Planc						
	constant = $6.6 \times 10^{34} J \cdot s$)						
	(a) 2.4 <i>nm</i>	(b) 2.4 <i>μm</i>	(c) 2.4 mm	(d) 2.4 <i>cm</i>			
Q16.	A burst of 10 ¹⁴ electr	of 10^{14} electrons uniformly accelerated to an energy of $15MeV$ is stopped by a					
	copper target block of mass $100 g$. Assuming the block is thermally insulated, what is the						
	rise in its temperature? (specific heat of copper is $0.09 cal / g K$)						
	(a) $6.3 K$	(b) 0.4 <i>K</i>	(c) 1.7 <i>K</i>	(d) 5.1 K			
Q17.	The function $y = ax^2 - bx + c$, where a, b and c are positive and constants, has a minima						
	at $x =$						
	(a) $\frac{b}{2a}$	(b) $\frac{a}{2b}$	(c) $\frac{b}{a}$	(d) $\frac{a}{b}$			
Q18.	During radioactive decay a nucleus emits a gamma ray with energy of $1.35MeV$. What is the wavelength of this photon?						
	(a) 920 fm	(b) 920 <i>nm</i>	(c) 920 <i>pm</i>	(d) 920 Å			
Q19.	The adiabatic compre	atic compressibility of an ideal gas is equal to (P is pressure and V is volume)					
	(a) $\frac{1}{P}$	(b) $\frac{P}{V}$	(c) <i>P</i>	(d) $\frac{V}{P}$			
Q20.	The angle between th	The angle between the vectors $\vec{a} = \hat{i} + \hat{j}$ and $\vec{b} = \hat{i} + \hat{j} + \hat{k}$ is					
	(a) 0^0	(b) 45°	(c) $\cos^{-1}\left(\frac{1}{3}\right)$	(d) $\cos^{-1}\left(\sqrt{\frac{2}{3}}\right)$			
Q21.	A 2 mW laser light	$\Delta 2mW$ laser light is emitted at a frequency of $6\times10^{14}Hz$. How many photons					
	average are emitted by this source per second? (Plank's constant= $6.6 \times 10^{-34} \ J \cdot s$)						
	(a) 1×10^{15}	(b) 2×10^{15}	(c) 3×10^{15}	(d) 5×10^{15}			

Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics

- Q22. A particle of mass m moves in a circle of radius r with uniform angular speed ω . The work done by the centripetal force in half of a complete rotation is
 - (a) 0
- (b) $2\pi m\omega^2 r^2$ (c) $\frac{\pi m\omega^2 r^2}{2}$ (d) $2\pi m\omega^2$
- Resistances R_1 and R_2 are connected in parallel and I is the total current flowing in the Q23. circuit. I_1 is the current flowing through R_1 . Which of the following conditions will produce minimum joule heating in the circuit?
 - (a) $I_1 = I \left(\frac{R_2}{R_1 + R_2} \right)$

(b) $I_1 = I_2 \left(\frac{R_2}{R_1 + R_2} \right)$

(c) $I_1 = I_2 \left(\frac{R_2}{R_1} \right)$

- (d) $I_1 = I_2 \left(\frac{R_1}{R} \right)$
- In a two-level atom, the energy gap is E. The probability of finding the atom in the Q24. excited state at temperature T will be
 - (a) exp $-\left(\frac{E}{k_{-}T}\right)$

- (d) $\frac{\exp{-\left(\frac{E}{k_B T}\right)}}{1 + \exp{-\left(\frac{E}{k_B T}\right)}}$
- Consider a two-dimensional quantum harmonic oscillator with frequency ω . How many Q25. energy levels are there with energy $11\hbar\omega$?
 - (a) 5

- (b) 8
- (c) 11
- (d) 21
- What is the entropy change when 1kg of ice at $0^{\circ}C$ melts reversibly to water at the same Q26. temperature? (Latent heat of melting of ice = 79.6 cal/g)

- (a) $122 kJ \cdot K^{-1}$ (b) $12.2 kJ \cdot K^{-1}$ (c) $1.22 kJ \cdot K^{-1}$ (d) $0.122 kJ \cdot K^{-1}$

Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics

Q27. The equation of motion of a particle of mass m in one-dimension is

$$m\frac{d^2x}{dt^2} = -ax - 3bx^2 - 4cx^3$$

where a,b and c are constants of appropriate dimension. The quantity that remains constant during its motion is

(a)
$$\frac{1}{2}m\dot{x}^2 + \frac{1}{2}ax^2 + bx^3 + cx^4$$

(b)
$$\frac{1}{2}m\dot{x}^2 + ax^2 + bx^3 + cx^4$$

(c)
$$\frac{1}{2}m\dot{x}^2 + \frac{1}{2}ax^2 + \frac{1}{3}bx^3 + cx^4$$
 (d) $\frac{1}{2}m\dot{x}^2 + ax^2 + \frac{1}{3}bx^3 + \frac{1}{4}cx^4$

(d)
$$\frac{1}{2}m\dot{x}^2 + ax^2 + \frac{1}{3}bx^3 + \frac{1}{4}cx^4$$

- Q28. The crystal structure of CsCl is a simple cubic lattice. Each unit cell of CsCl will contain
 - (a) 1 atom
- (b) 2 atoms
- (c) 3 atoms
- (d) 4 atoms

Q29. The reading in the ammeter A is

- (a) 0.5454 A
- (b) 5.5450 A
- (c) 5.4555 A
- (d) 1.5455 A
- An ideal gas undergoes isothermal expansion at temperature T from volume V_1 to V_2 . Q30. The entropy change per mole is

- (a) $R\left(\frac{V_2}{V_1}\right)$ (b) $R\left(\frac{V_1}{V_2}\right)$ (c) $R\ln\left(\frac{V_2}{V_1}\right)$ (d) $R\ln\left(\frac{V_1}{V_2}\right)$
- Which of the following is responsible for the existence of the Fermi surface in metals? Q31.
 - (a) Nuclear force
 - (b) Coulomb repulsion between electrons
 - (c) Bose-Einstein condensation
 - (d) Pauli exclusion principle

Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics

- Q32. A sodium vapour lamp emits yellow light corresponding to two wavelengths 589 and 589.59 nm. What is the minimum number of rulings must a diffraction grating have to resolve these two lines in the first order?
 - (a) 589
- (b) 700
- (c) 900
- (d) 1000

- Q33. If z = x + iy, the value of $|\sin z|^2$ is
 - (a) $\sin^2 x + \sin^2 y$

(b) $\sin^2 x + \cos^2 y$

(c) $\sin^2 x + \sinh^2 y$

- (d) $\sin^2 x + \cosh^2 y$
- Q34. If a signal passing through a gate is inhibited by sending a LOW into one of the inputs, and the output is HIGH, the gate is
 - (a) an AND gate

(b) a NAND gate

(c) a NOR gate

- (d) an OR gate
- Q35. If \hbar is the reduced Planck's constant, c is the speed of light, and G is the universal gravitational constant, which of the following has the dimension of length?
 - (a) $\frac{\hbar G}{c^2}$
- (b) $\sqrt{\frac{\hbar c}{8\pi G}}$
- (c) $\sqrt{\frac{\hbar G}{c^5}}$
- (d) $\sqrt{\frac{\hbar G}{c^3}}$